Discontinuous Galerkin methods on hp-anisotropic meshes I: a priori error analysis
نویسندگان
چکیده
We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second–order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic computational meshes with anisotropic tensor-product polynomial basis functions. The theoretical results are illustrated by a numerical experiment.
منابع مشابه
hp–VERSION INTERIOR PENALTY DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS ON ANISOTROPIC MESHES
We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for linear second-order elliptic reactiondiffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the hpDGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. ...
متن کاملHp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملhp-dGFEM for Second-Order Elliptic Problems in Polyhedra I: Stability on Geometric Meshes
We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary value problems in three dimensional polyhedral domains. In order to resolve possible corner-, edgeand corneredge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined towards the corresponding ne...
متن کاملTwo-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Quasilinear PDEs
In this thesis we study so-called two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of quasilinear partial differential equations. The two-grid method is constructed by first solving the nonlinear system of equations stemming from the discontinuous Galerkin finite element method on a coarse mesh partition; then, this coarse solution is used to linearis...
متن کاملhp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJCSM
دوره 1 شماره
صفحات -
تاریخ انتشار 2007